Experimenting with Hydroponic Gardening to Grow Strawberries

STEM STEAM Science Hydroponics

If you’re new to our blog, welcome! We generally talk education topics like STEM, STEAM, science, hands-on learning and maker spaces. But in our spare time, we tinker! And now that Jerry of Brain Brigade has officially retired from teaching…he has MORE spare time! We have been involved in many hydroponic and aquaponics projects in the classroom and maker space, but we have been diving in to various hydroponic methods of growing plants at home.

Last summer I visited Iowa and I noticed a really clever hydroponic tower that was growing lettuce. It was made of PVC pipe that wound around a central tower. I thought that the idea was great. It was compact and allowed for maximum use of growing space for sunlight and circulation of nutrient solution. This winter I began to wonder if something like this could be used to grow strawberries hydroponically. After a bit of research, I decided that I would try to make a tower similar to the one that I has seen.

STEM STEAM Science Hydroponics

This is a photo I took in Iowa of lettuce growing on a hydroponic tower.

As I looked at 4 inch PVC pipe I soon realized that it was very heavy and expensive. I decided to use a lighter plastic pipe that I found at Home Depot. It used the same 90 degree elbows that the heavier pipe used. I first constructed the frame that I would mount it on using 1 ½ inch PVC, elbows and a cross piece at the top to connect all of the frame. I mounted this frame on a wooden base and drilled holes to secure it with bolts. Next, I determined that the PVC pipe surrounding the frame would have to be cut at 25 inches. I bored 3 inch holes in the pipe using a circle drill and mounted the pieces to the frame using plastic straps and bolts. I also purchased a 10 gallon tub for my nutrient solution that sits inside the bottom middle of the frame.STEM STEAM Science Hydroponics

I ordered 50 strawberry plants from Jung’s called Tristar that is ideal for hanging baskets and produces a crop in summer and in fall. I also ordered strawberry nutrient from Amazon. My only concern, is that the pipe connections at the elbows will leak because I have not cemented them with PVC cement. I will use my pump from my hydroponic system in my basement to pump the nutrient solution to the plants. I won’t be using the pump during the summer, so it’s a nice way to utilize my materials all year long! Now. We just need it to get warm around these northern parts!

Maybe you’re thinking, “this is cool…” but aren’t quite ready to take on The Tower quite yet. You could give windowsill hydroponics a try to get your feet wet! It’s an excellent classroom project too.

How to Light Up Your Classroom with Bright LEDs

STEM STEAM Science Classroom Maker Space

In this step-by-step tutorial, we show you how we used SMD LEDs and copper tape to create a parallel circuit. The result is a glowing spring card to share with a friend! This project is easy. A perfect beginner activity for introducing LEDs as a STEM or science concept in your classroom. Students will be deLIGHTED {pun intended!} to see their project glow. Get the full download here that includes the printable card and copper tape diagram and information on where we purchased our inexpensive supplies!

STEM STEAM Science Classroom Maker Space

Step 1:
You will notice that the SMD LEDs come in a black strip of 25 small compartments. The tiny lights  can be removed by peeling the strip of clear plastic off of the back of the black strip. As you do this, the small lights will fall out of their containers. Make sure to catch them and place them in a container that you can label and seal so you don’t lose them. I separate by color.

STEM STEAM Science Classroom Maker Space

Step 2:
Print out the card templates on cardstock or heavy paper. Choose two-sided print so that the two pages prints to one sheet of paper. You can also design your own card by drawing or using a computer program to create your desired design.
Step 3:
Fold card in half so that the flowers (or your design) are on the outside. The card will open at the bottom and you should be able to see the inside of the card. This includes the circuit template and personal message lines.

STEM STEAM Science Classroom Maker Space
Step 4:
Open the template back up. Punch holes in the center of each of the flowers. You can use a long hole punch, a paper piercing tool, a sharp pen or pencil, or any other tool you have around.
Our paper punch wasn’t long enough to reach, so we used a tiny screwdriver. We placed our card on a stack of scrap paper to protect the table. Next, we carefully scored around the circle with the edge, pushing firmly but not through the paper. Then we gently pressed around the edge, once again following the edge of the circle and the center circle popped out leaving a
small hole.

STEM STEAM Science Classroom Maker Space
Step 5:
Once you have created a hole in each of the flowers, fold the card back up. Mark you hole location using a marker. The marker will leave a dot on your card template that will show you where to place your LED.

STEM STEAM Science Classroom Maker Space
Step 6:
Locate the dark gray lines on the diagram. You will be placing copper tape strips on the lines. If you are designing your own, simply look where you have marked your LED placements. We had three flowers, and used three LEDs. This is where you will need to map out how you run your copper tape.

STEM STEAM Science Classroom Maker Space
Step 7:
Begin placing the copper tape on the negative (-) side of the diagram, peel off the backing so that the sticky side adheres to the paper.  For your personal design, begin placing the copper tape on one side of the LED dots, keeping one long piece of tape that will run to the battery. The negative side will go under the battery and make contact with the negative terminal on  the battery.
TIP: When making a turn with your copper tape, first fold the tape in the opposite direction of the way you want to go. Then fold it back into the direction and smooth when you are complete.

 

STEM STEAM Science Classroom Maker Space

Step 8:
Use the side of a pen or marker to smooth the copper tape to the paper.

STEM STEAM Science Classroom Maker Space

Step 9:
Locate the positive side of each circuit and place the copper tape. Place the battery positive (+) side up in the circle. If designing your own, you will once again locate your LED marks and run the copper tape parallel to the first copper tape you placed.
TIP: Place the positive (+) tape VERY close, but not touching the negative (-) side of tape. The strips of copper tape must be very close so that the tiny LED can connect to both sides, but if the tape touches it will short circuit!

 

STEM STEAM Science Classroom Maker Space

Step 10:
When you get to the battery, stick the copper tape to the positive (+) side of the battery which should be facing up. See photo for close up details.
Step 11:
Using scotch tape, adhere your battery to the cardstock so that it doesn’t move around.

STEM STEAM Science Classroom Maker Space

Step 12:
Time to get out your SMD LEDs! Take a closer look at your LED bulb. You’ll notice a clear side, and if you turn it over, a flat side with a green “T”. This is important for knowing which side is the positive (+) and the negative (-). Energy can only flow through an LED one way, so you must put it on the copper tape the correct way so that it lights up. The top of the “T” attaches to the positive (+) side of the copper tape. When you place your LED, look at the “T” before sticking to the tape!

STEM STEAM Science Classroom Maker Space

Step 13:
To place, we use a small piece of scotch tape to “grab” onto the top of the LED (the clear part). Then lift the tape and LED up and look at the “T” on the bottom. Use the tape to adhere the LED onto the mark that you made in Step 5. If you have the LED on the correct way, it should light up!
Step 14:
If the bulb doesn’t light up, remove the LED, rotate it 180 degrees. You may have had the positive and negative connections placed wrong. Test again. If it still doesn’t work, review our troubleshooting guide.

STEM STEAM Science Classroom Maker Space

Step 15:
Place the other two LEDs following the same process.

STEM STEAM Science Classroom Maker Space

Step 16:
Build a switch! To turn off your card, simply slide a small piece of paper under the battery to disrupt the current between the negative terminal of the battery and the copper tape!

Check out the full tutorial with the download here!

 

Here’s the same card, but with two switches! Check out the tutorial for this advanced LED project here.

How to Troubleshoot LEDs Like a Pro

LEDs STEAM STEM Maker Space Classroom Science

A huge part of our teaching philosophy is to help students develop persistence and become proficient at problem solving. But developing those skills isn’t always easy. We live it out around here so that it’s easier to teach in the classroom. We tinker in our spare time. We encourage the kids {actually, everyone} in our family to ask questions and work out solutions. We often ask for help and work together to solve a problem. We recently finished a new light up project; a greeting card that celebrates spring. We designed a cover with three flowers and put our tiny LED lights so that when the card is closed, the LEDs light up and illuminate the flowers. This particular circuit had two switches that were activated by a finger push. Since we were operating two switches from the same battery, we needed to hard wire the battery into the circuit and place different circuits for the lights. It was tricky to say the least, and since I had not tried this before, it took some time to think it through.

STEM STEAM Science Classroom Maker Space

I’m still not convinced that I have the best circuit path for this project. My plan had a small finger push button for each light. When I pushed down on a spot, a piece of copper tape that was stuck on the inside cover of the card made contact with the broken circuit of one light and completed the circuit thereby causing the light to come on. Needless to say, much tweaking was needed.

First, I had to make sure that the copper tape that completed the circuit was positioned exactly above the break in the circuit, so when I pushed down it contacted both ends of the broken circuit. Next, there seemed to be a problem with the LED lights that were in the circuit. I just could not get them to stay on. I finally determined that the copper tape was too close together and the lights were actually shorting themselves out.

Next, the circuit began to act up again and would not consistently light the bulbs. In checking and rechecking the circuit I found where the copper tape touched the battery, it was making contact with both the positive and negative portion or the battery and shorting the circuit.

STEM STEAM Science Classroom Maker Space

At times, it can be very frustrating troubleshooting whether it is circuits or programming. What I have learned from this is that there are many ways a circuit can fail. Hopefully, in the future it will help me problem solve more quickly.

You can try this card – we have two tutorials – a beginner version with no switches and an advanced version with the two switches!